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ABSTRACT 

 
Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity, 
embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of 
FBGs is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the 
measured parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding 
changes in intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among 
the various types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of 
their small weight and volume, lack of moving parts, easy integration, and good stability. 
  
In this paper we investigate the applicability of unbalanced interferometers to analyze signals reflected from Bragg grat-
ings. Analytical and experimental data are presented. 
 
Keywords: Fiber Bragg gratings, temperature sensors, fiber optics, interferometer  
 
 

1. INTRODUCTION 
 
Fiber Bragg gratings (FBGs) have found numerous applications in sensing and communication systems.1 The principle 
of FBGs is based on a selective spectral reflectivity of a section of fiber that has a periodically varied refractive index. 
The period of these variations is affected by the environmental conditions the fiber is in and varies with changes in the 
environment. Thus, with changes in the environment, the spectra of the reflected signal changes. This property makes an 
FBG a superior sensing element.  
 
Another distinguished feature of Bragg grating sensors is that these sensors are so called spectral sensors. This means 
that the response of Bragg gratings to changes in the environment occurs in the spectral domain. The position of the sig-
nal peak in the spectral domain is affected by the environment (temperature, pressure, etc.). To evaluate the performance 
of an FBG one should send a signal reflected from the grating to a spectrometer with a dispersive element like spectral 
prism or focal plane array detector. Sophisticated software then would correlate a position of the optical spot on the array 
detector with the wavelength of light that generated the spot. Such an arrangement suffers drawbacks because of the 
weight and size of constituent components. Another approach, more practical and suitable for aerospace applications, 
would involve a smaller and lighter device capable of converting the wavelength to intensity. One of such devices is an 
unbalanced interferometer.2–4  
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2. UNBALANCED INTERFEROMETER 
 
2.1 Interference in unbalanced interferometer 
It has been previously shown that the intensity pattern resulting from the interference of two optical beams having identi-

cal intensities, 0I , and wavelengths, 0λ , has the following form: 
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where 0I  is the light intensity in each arms of the interferometer, 

 0λ  is the central wavelength of the light, 

 )(nL∆  is the optical path difference or imbalance in the interferometer, 

 γ  is the fringe visibility function. 

 
The optical path difference, )(nL∆ , is a function of the physical lengths of the interferometer arms and the refractive 

indices of the arm materials. Changes in the environment may affect both the refractive indices and the physical length of 
the arms, altering the optical path length. The optical path difference of the two arms is called imbalance. The interfer-
ometer is also sensitive to the wavelength of light that passes through it. In this case, if the imbalance of the interferome-
ter is unchanged, it becomes a wavelength detector. 
 
The fringe visibility function is 
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where λ∆ is the optical bandwidth. 
 
Analysis of Eq. (1) show that continuous monotonic variations in the wavelength, 0λ , lead to quasi-periodic variations in 

the resultant intensity output of the interferometer.  
 
2.2 Instrument function 
The ability of an instrument to change the otherwise continuously constant spectrum of incident light is described by its 
instrument function. In the case of an unbalanced interferometer, its instrument function, as a function of wavelength, is 
described as follows: 
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Figure 1 shows a plot of the computed instrument function of an unbalanced interferometer with an optical imbalance of 
2.0 mm. Oscillations in the wavelength domain are clearly observed and the period of these oscillations, λΛ , is  

approximately: 
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2.3 Observation of the instrument function 
To obtain an instrument function of an unbalanced interferometer, its input should be a time-domain Delta function, 
which in the spectral domain, corresponds to an infinitely broad spectrum. In practice we generate a quasi-transfer func-
tion by applying an input signal with a broad, but wavelength limited spectrum. Experimentally, the quasi-transfer func-
tion of the interferometer in the optical domain is obtained by sending broadband light through the interferometer and 
detecting the transmitted spectrum using a commercial optical spectrum analyzer. The source of the broadband light used 
in this experiment was a superluminescent light emitting diode with a nominal center wavelength of 1550 nm and optical 
bandwidth of 40 nm. Figure 2 depicts the quasi-transfer function of the unbalanced interferometer used in the experi-
ment. This plot clearly displays quasi-periodic changes of the resultant light intensity in the spectral domain and mono-
tonic variations in the instrument function between its neighboring maximum and minimum values. 
 
When an unbalanced interferometer is used to measure wavelength, the interferometer’s instrument function causes its 
resultant light intensity to vary depending on the spectral position of the wavelength relative to the instrument function. 
If the wavelength of the incident light varies between the neighboring maximum and minimum values of the instrument 
function, then the value of the resultant light intensity changes monotonically.  
 

3. EXPERIMENT 
 
3.1. Test setup 
The test setup, as seen in Fig. 3, consists of a thermally stabilized super-luminescent diode (SLED) light source con-
nected to a 90/10 coupler. The 10% output of the coupler is connected to a photodetector, PD, used to monitor the SLED 
stability throughout the experiment. The 90% output port of the coupler is connected to the first port of a 3-port fiber 
optic circulator. The second port of the circulator is connected to the FBG which is inside a box furnace. The reflected 
signal from the FBG propagates back through the circulator to an optical amplifier. The amplifier boosts the signal to a 
more easily detectable level. The amplified signal from the FBG is then multiplied by the instrument function of the un-
balanced interferometer. The output of the interferometer is monitored using an optical spectrum analyzer (OSA). All 
equipment control and data acquisition is accomplished using LabVIEW. The arrangement permits recording and proc-
essing the quasi-instantaneous light spectra that reach the OSA as well as conducting a fast integration of the light inten-
sities over a broad range of wavelengths. The integration of light intensities over a broad range of wavelengths is similar 
to a having a photodetector instead of the OSA. 
 
The experiment consists of heating the furnace with the FBG from room temperature up to 500 °C and measuring the 
total power of the optical signal reflected by the FBG using the OSA. Because the optical signal, prior to reaching the 
OSA, has to pass through the unbalanced interferometer, its intensity is modulated by the interferometer’s instrument 
function. Integrating the signals from the OSA during the heating process of the FBG provides information on changes in 
the total optical power and thus changes in the FBG’s wavelength.  
 
3.2 Fiber Bragg gratings 
Conversion of wavelength to intensity assumes that the intensity of the optical signal reflected back from the FBG  
remains constant over a large range of temperatures. To assure the FBGs are stable, they to be specially treated. This 
treatment consists of annealing the gratings at 1000 °C for several hundred hours. This treatment leads to the dissipation 
of the original FBG and subsequent formation of secondary gratings in place of the original. It has been recently demon-
strated that the secondary gratings exhibit high thermal stability, thus providing a stable intensity level to the  
interferometer.5–7  
 
After evaluating the performance of the unbalanced interferometer, the FBG’s response to changes in temperature was 
reevaluated by processing spectra of corresponding signals reflected by the grating. The setup for this was identical to 
the one described in Fig. 3 with the exception of the removal of the unbalanced interferometer from the setup. Figure 4 
shows FBG spectra from this evaluation recorded at three different temperatures with a 100 °C interval. It can be seen in 
this figure that the peak power at the FBG reflected wavelengths was practically unchanged. 
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3.3. Unbalanced interferometer 
To keep the optical path difference of the interferometer constant, its construction takes advantage of the birefringent 
properties of a LiNbO3 crystal. Detailed descriptions of devices that utilize these properties and their principle of opera-
tion are described elsewhere.8,9 The imbalance, )(nL∆ , in the LiNbO3 crystals is generated by a difference in the transit 

time between the two orthogonally polarized components of light propagating through the crystal. These components 
have different refractive indices, no and ne, and are referred to as ordinary and extraordinary beams. The difference in the 
transit time for these two components leads to the optical imbalance.  
 
The unbalanced interferometer was made from a long Z-cut LiNbO3 crystal that is approximately 20.05 mm long. This 
crystal splits the incident light into two orthogonally polarized components, which, after passing through the entire 
length of the crystal, accumulate the optical path difference.10 The refractive indices, no and ne, of the crystal follow the 
dispersion relationship for liquids and solids described by Sellmeier’s dispersion formula.11,12 For a wavelength around 
1550 nm at room temperature, the indices are found to be approximately no~ 2.211 and ne ~2.138.13 Thus, over the length 
of the crystal, the accumulated optical path difference ( )eo nnL −  is approximately 1.464 mm.  

 
Figure 5 shows the impact of the unbalanced interferometer on the FBG spectrum as observed by the OSA. The spectra 
were taken under conditions similar to those used for generating Fig. 4. Differences in the FBG peak power at the three 
temperatures shown are due to the unbalanced interferometer. 
 

4. RESULTS AND DISCUSSION 
 
The results of this work have demonstrated that an unbalanced interferometer can change the peak power of an FBG’s 
spectrum. When the FBG’s reflected wavelength moves in the spectral domain according to an applied temperature, that 
change in wavelength can be converted into a corresponding change in the intensity. To track a temperature unambigu-
ously, the interferometer should be constructed in such a way as to make the conversion monotonous. In other words, the 
period of the quasi-periodic instrument function and the range of thermal variations should match such that changes in 
the temperature applied to the FBG would always place the corresponding FBG reflected wavelength at either leading or 
trailing slopes of the instrument function. Figure 6 shows four FBG spectra obtained at different temperatures that place 
the corresponding FBG wavelengths on a leading slope of the instrument function of the interferometer. Those spectra 
integrated over a broad range of wavelengths are depicted in Fig. 7. This figure shows the increase in total power as a 
function of temperature over a range from ambient to about 130 °C. 
 
As shown in previous work, the peak wavelength of an FBG is an accurate representation of temperature and, after an-
nealing, its power output is very stable over a wide temperature range. Also, the power output of the interferometer fol-
lowed the product of its instrument function and the FBGs input signal very precisely. However an accurate correlation 
between temperature and the interferometer’s output was hampered by the instability of the interferometer. The interfer-
ometer was sensitive to the input light’s polarization state which we did not have a good means of controlling in this 
work. With better control of the input polarization, the signal from interferometer would have most likely have been 
more stable. Alternately, using a depolarizer at the input to the interferometer should greatly reduce interferometer’s sen-
sitivity to polarization state. The interferometer used would, in practice, only allow for a relatively narrow temperature 
range for the sensor. Using an interferometer with a shorter path would allow for a much broader temperature range. 
Given the results from this experiment, we believe that an FBG in combination with an unbalanced interferometer could 
be used as a compact temperature measurement system with a wide dynamic range. 
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Fig. 1. Instrument function of an unbalanced interferometer with an optical imbalance of 2.0 mm. 
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Fig. 2. Instrument function of an unbalanced interferometer observed on the screen of a spectrum analyzer. 
 
 
  
 
 
 

 
 
Fig. 3. Experimental setup to demonstrate the suitability of unbalanced interferometers for the wavelength-to-intensity conversion of 

signals generated by FBGs. 
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Fig. 4. FBG spectra recorded by a spectrum analyzer at three different temperatures with 100 °C intervals. 
 
 
 
 
 
 
 
 

  
 
Fig. 5. Impact of an unbalanced interferometer on FBG spectra recorded by a spectrum analyzer at three different temperatures with 

the 100 °C interval in Fig. 4. 
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Fig. 6. FBG spectra obtained at five different temperatures that place the corresponding FBG wavelengths at a leading edge of the 

instrument function of the interferometer. 
 
 
 
 
 
 
 

 
 
 
Fig. 7. Results of integration of the FBG spectra over a broad range of wavelengths, obtained at the five temperatures in Fig. 6. 
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Fiber Bragg gratings (FBG) have become preferred sensory structures in fiber optic sensing system. High sensitivity,
embedability, and multiplexing capabilities make FBGs superior to other sensor configurations. The main feature of FBGs
is that they respond in the wavelength domain with the wavelength of the returned signal as the indicator of the measured
parameter. The wavelength is then converted to optical intensity by a photodetector to detect corresponding changes in
intensity. This wavelength-to-intensity conversion is a crucial part in any FBG-based sensing system. Among the various
types of wavelength-to-intensity converters, unbalanced interferometers are especially attractive because of their small
weight and volume, lack of moving parts, easy integration, and good stability. In this paper we investigate the applicability
of unbalanced interferometers to analyze signals reflected from Bragg gratings.  Analytical and experimental data are
presented.






